What are the technologies in the LED display lamp beads?

The application of LED display is very wide, and besides the control system, power supply and other accessories, the most important thing is still the LED lamp beads. This is like a computer without a display, even if the host is in a powerful way, it will not play any role. of. So today we will talk about LED lamp beads.

At present, the luminous color and luminous efficiency of LED lamp beads are related to the materials and processes used to make LEDs. Different materials used to make LEDs can generate photons with different energies, thereby controlling the wavelength of the light emitted by the LED, that is, the spectrum or color. The currently known technologies mainly include the following:

1. Transparent substrate technology

InGaAlP LEDs are usually prepared by epitaxially growing InGaAlP light-emitting areas and GaP window areas on a GaAs substrate. Compared with InGaAlP, GaAs material has a much smaller forbidden band width. Therefore, when short-wavelength light enters the GaAs substrate from the light-emitting area and window surface, it will be fully absorbed, which becomes the main reason for the low light-emitting efficiency of the device. .

A Bragg reflection area is grown between the substrate and the confinement layer, which can reflect the light that is perpendicular to the substrate back to the light-emitting area or the window, which partially improves the light-emitting characteristics of the device. A more effective method is to remove the GaAs substrate first and replace it with a fully transparent GaP crystal. Because the substrate absorption area is removed from the chip, the quantum efficiency is increased from 4% to 25-30%.

In order to further reduce the absorption of the electrode area, some people made this transparent substrate type InGaAlP device into a truncated inverted cone shape, which greatly improved the quantum efficiency.

2. Metal film reflection technology

The transparent substrate process first originated from companies such as HP and Lumileds in the United States. The metal film reflection method was mainly researched and developed by Japanese and Taiwanese manufacturers. This process not only avoids patents on transparent substrates, but is also more conducive to mass production. The effect can be said to be similar to the transparent substrate method.

This process is usually called the MB process. The GaAs substrate is first removed, and then an Al metal film is vapor deposited on its surface and the surface of the Si substrate at the same time, and then welded together under a certain temperature and pressure. In this way, the light irradiated from the light-emitting layer to the substrate is reflected by the Al-based metal film layer to the surface of the chip, thereby increasing the luminous efficiency of the device by more than 2.5 times.

3. Surface microstructure technology

The surface microstructure process is another effective technology to improve the light-emitting efficiency of the device. The basic point of this technology is to etch a large number of small structures on the surface of the chip with a size of the order of the light wavelength. Each structure is in the shape of a truncated tetrahedron, which not only expands The light output area is increased, and the refraction direction of the light on the chip surface is changed, so that the light transmission efficiency is significantly improved.

Measurements indicate that for a device with a window layer thickness of 20 µm, the light extraction efficiency can increase by 30%. When the thickness of the window layer is reduced to 10 µm, the light extraction efficiency will be improved by 60%. For LED devices with wavelengths of 585-625nm, after fabricating the texture structure, the luminous efficiency can reach 30lm/w, which is close to the level of transparent substrate devices.

4, flip chip technology

The GaN-based LED structure layer is grown on the sapphire substrate by the MOCVD technology, and the light emitted from the P/N junction light-emitting area is emitted through the upper P-type area. Due to the poor conductivity of P-type GaN, in order to obtain good current expansion, it is necessary to form a metal electrode layer composed of Ni-Au on the surface of the P area by vapor deposition technology. The P area leads are led out through this layer of metal film. In order to obtain good current expansion, the Ni-Au metal electrode layer should not be too thin.

For this reason, the luminous efficiency of the device will be greatly affected, and it is usually necessary to take into account the two factors of current expansion and luminous efficiency at the same time. However, under any circumstances, the existence of metal thin films will always make the light transmission performance worse. In addition, the presence of wire solder joints also affects the light extraction efficiency of the device. Using GaN LED flip chip structure can fundamentally eliminate the above problems.

5, chip bonding technology

Optoelectronic devices have certain requirements on the performance of the required materials, and usually require a large bandwidth difference and a large change in the refractive index of the material. Unfortunately, there is generally no natural material of this kind. The homoepitaxial growth technology generally cannot form the required bandwidth difference and refractive index difference. However, the usual heteroepitaxial technology, such as epitaxial GaAs and InP on silicon wafers, not only costs more, but also combines the location of the interface. The error density is also very high,

It is difficult to form high-quality optoelectronic integrated devices. Because low-temperature bonding technology can greatly reduce the thermal mismatch between different materials, reduce stress and dislocations, high-quality devices can be formed. With the gradual understanding of the bonding mechanism and the gradual maturity of the bonding process technology, chips of a variety of different materials can already be bonded to each other, which may form some special-purpose materials and devices. For example, a silicide layer is formed on a silicon wafer and then bonded to form a new structure. Due to the high conductivity of silicide, it can replace the buried layer in bipolar devices, thereby reducing the RC constant.

6. Laser Stripping Technology (LLO)

Laser lift-off technology (LLO) uses laser energy to decompose the GaN buffer layer at the GaN/sapphire interface, so as to realize the separation of the LED epitaxial wafer from the sapphire substrate. The technical advantage is that the epitaxial wafer is transferred to a heat sink with high thermal conductivity, which can improve the current expansion in a large-size chip. The n-side is the light-emitting surface: the light-emitting area is increased, the electrode is small, which facilitates the preparation of microstructures, and reduces etching, grinding and scribing. More importantly, the sapphire substrate can be reused.

Share:

Share on facebook
Facebook
Share on twitter
Twitter
Share on pinterest
Pinterest
Share on linkedin
LinkedIn

What are the technologies in the LED display lamp beads?

Categories

Hola LED

What are the technologies in the LED display lamp beads?

The application of LED display is very wide, and besides the control system, power supply and other accessories, the most important thing is still the LED lamp beads. This is like a computer without a display, even if the host is in a powerful way, it will not play any role. of. So today we will talk about LED lamp beads. At present, the luminous color and luminous efficiency of LED lamp beads are related to the materials and processes used to make LEDs. Different materials used to make LEDs can generate photons with different energies, thereby controlling the wavelength of the light emitted by the LED, that is, the spectrum or color. The currently known technologies mainly include the following: 1. Transparent substrate technology InGaAlP LEDs are usually prepared by epitaxially growing InGaAlP light-emitting areas and GaP window areas on a GaAs substrate. Compared with InGaAlP, GaAs material has

What problems may be faced by LED display screens produced by inferior LED display manufacturers?

With the rapid development of the automobile market in recent years, more and more green-brand cars can be seen on the road. These green-brand pure electric cars are jokingly called “electric fathers” by netizens. The reason for this title is that the car is originally an improved product that improves the convenience of our lives. It can liberate our legs and go anywhere anytime; However, due to the limitation of cruising range and imperfect charging facilities, electric vehicles have brought huge inconvenience to the daily use of car owners. Aside from the inconvenience of daily charging, even the necessary cold and warm air conditioning in winter and summer must be considered as car owners. Use it to give priority to ensuring the supply and guarantee of limited electric energy for driving mileage. As a travel tool, car owners cannot enjoy a convenient and comfortable driving experience. Like electric vehicles, LED

P0.7 or P0.9 small-pitch LED display which is more popular with people

Small-pitch LED display have been available for many years. As the most potential competitor in large-screen displays, small-pitch LEDs have replaced some of the DLP and LCD markets, and more and more are widely used in various industries. middle. With the development of science and technology, the small pitch of commercial applications has been promoted step by step from P2.5 to P1.0 to P0.7, and companies have launched small pitch products with the smallest known performance at P0.4mm. SMD and COB must be a topic that cannot be avoided when it comes to the technology update of small pitch. As we all know, in the small-pitch LED display industry, the SMD label market is relatively mature, and the COB small-pitch can only be said to be a rising star for various reasons. With 0.7mm pitch, it can display 2K resolution images on a 61-inch area. Such a display effect is

The advantages and disadvantages of COB packaged LED display and its development difficulties

COB packaging is a major advancement in LED displays in recent years. Thanks to the development of COB packaging technology, the dot pitch of displays is getting smaller and smaller. At present, high-end LED manufacturers have achieved 0.4mm dot pitch, but The problem is also very obvious. After all, there are some technical barriers, so the price is still relatively high. COB packaging integrates upstream chip technology, midstream packaging technology and downstream display technology. Therefore, COB packaging requires close cooperation between upstream, midstream and downstream companies to promote the large-scale application of COB LED displays. As shown in the figure above, it is a COB integrated packaged LED display module. The front side is composed of LED lamp modules to form pixels, and the bottom side is an IC driving element. Finally, each COB display module is spliced ​​into a design-sized LED display. The theoretical advantages of COB: 1. Design